FIRST TERM EXAMINATION (16 SEPT 2015) Paper - CHEMISTRY Class – XII (SET – B)

Time: 3hrs.

General Instruction:

- i) Ques. 1 5 carry 1 mark each.
- *ii)* Ques. 6 10 carry 2 marks each
- iii) Ques. 11 22 carry 3 marks each
- *iv) Ques. 23 carry four marks.*
- v) Ques. 24-26 carry 5 marks each

All Questions are compulsory:

- Q1. Name a compound which shows both types of defects in solids.
- Q2. State the main advantage of molality over molarity as the unit of concentration.
- Q3. What are the advantages of fuel cell over ordinary cell?
- Q4. Distinguish between adsorption and absorption.
- Q5. What is a copolymer?
- Q6. Calculate the packing efficiency in case of body centred cubic lattice.
- Q7. The conversion of the molecules X to Y follows second order kinetics. If the concentration of X is increased to three times, how will it affect the rate of formation of Y?
- Q8. Calculate the e.m.f. of the cell in which the following reaction takes place

 $2Cr(S) + 3Cd^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Cd(S)$

(Given $E^0 Cr^{3+} / Cr = -0.74V, E^0 Cd^{2+} / Cd = -0.40V$)

Q9. Write the structures of following compounds

(i) 2 -Chloro 3 -methylpantane (ii) 1, 4 dibromobut -2 -ene

Q10. Arrange the compounds of each set in order of reactivity towards SN^2 displacement;

(i) $CH_3 Br OR CH_3I$

- Q11. An element has a body centered cubic (bcc) structure with cell edge of 288 pm. The density of the element is 7.2gcm⁻³. How many atoms are present in 208g of the element?
- Q12. Explain giving suitable examples
 - a) Frenkel defect
 - b) Ferromagnetism
 - c) Insulators
- Q13. The boiling point of benzene is 353.23k. When 1.80g of a non-volatile solute was dissolved in 90g of benzene, the boiling point is raised to 354.11k. Calculate the molar mass of the solute. $(K_b \text{ for benezene} = 2.53 \text{ k g mol}^{-1})$

MM: 70

Q14. Explain what is observed when

- a) an electrolyte, NaCl is added to ferric hydroxide sol.
- b) when a beam of light is passed through colloidal solution.
- c) electric current is passed through colloidal solution.

Q15. Give reasons:

- a) H_3PO_3 is diprotic (or dibasic)
- b) N does not form pentahalides while phosphorus does.
- c) F_2 is a powerful oxidizing agent
- Q16. Complete the reactions:
 - a) $C_2H_4 + O_2 \rightarrow$
 - b) $P_4 + NaOH + H_2O \rightarrow$
 - c) $X_e F_6 + H_2 O \rightarrow$
- Q17. What are ideal and non-ideal solutions? Discuss positive and negative deviation from ideal behaviour for liquid pairs.
- Q18. In button cell used in watches, the following reaction takes place:

 $Zn(S) + Ag_2O(S) + H_2O(l) \rightarrow Zn^{2+}(aq) + 2Ag(S) + OH^{-}(aq)$

Determine: E^0 and ΔG^0 for the reaction

Given: $E^0 Zn^2 / Zn = 0.76V$, $E^0 Ag^+ / Ag = 0.34V$

- Q19. What is the difference between primary and secondary battery? Write reactions of Lead Storage battery at anode and cathode while recharging.
- Q20. The rate of a particular reaction doubles when temperature changes from 27° C to 37° C. Calculate the energy of activation of such a reaction.
- Q21. Give reasons:
 - a) Grignard regents should be prepared under anhydrous conditions.
 - b) Alkyl halides, though polar, are immiscible with water.
 - c) The dipole moment of chlorobenzene is lower than that of cyclohexyl chloride.
- Q22. Define:
 - (a) Addition polymerization.
 - (b) Condensation ploymerisation.
 - (c) Thermosetting polymers.
- Q23. Every year as winter sets in, we find smog in the sky. As a result, visibility is very poor. Lots of accidents are reported in different parts of the country and there is loss of valuable lives.
 - a) What is smog?
 - b) How is it caused?
 - c) What harmful effects does it have on our body.
 - d) Suggest some ways to check smog.

Q24. (i) What are Azeotropes? What are its types?

ii) Vapour pressure of pure water at 298K is 23.8mm Hg. 50g of urea (NH_2CONH_2) is dissolved in 850 g of water. Calculate the vapour pressure of water for this solution and its relative lowering.

OR

- a) What is Van't Hoff factor? What possible value can it have if solute undergoes dissociation in solution?
- b) Determine the osmotic pressure of a solution prepared by dissolving 25 mg of K_2 SO₄ in 2L of water 25°C , assuming that it is completely dissociated.
- Q25.a) Differentiate between order and molecularity.
 - b) A first order reaction takes 40min for 30% completion. Calculate $t_{1/2}$.

OR

- i) For a reaction $2A \rightarrow$ Products, the concentration of A decreases from $0.5 \, mol \, L^{-1}$ to $0.4 \, mol \, L^{-1}$ in 10 minutes. Calculate the rate during this interval.
- ii) Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law with $t_{1/2} = 3hr$. What fraction of sample of sucrose remains after 8 hours?
- Q26.i) Draw structures of
 - a) BrF_3
 - b) PCl_5
 - ii) Give reasons
 - a) ICl is more reactive than I_{2} .
 - b) Oxygen is a gas but S is a solid.
 - c) Bond angle in PH₃ is less than NH₃ molecule.

OR

- i) a) What is the covalence of $N \text{ in } N_2O_5$?
 - b) Why elements of Group 18 are called noble gases?
- ii) Give reasons:
 - a) Bond dissociation energy of F_2 is less than that of Cl_2 .
 - b) The majority of noble gas compounds are those of Xenon.
 - c) PCl_5 is ionic in nature in the solid state.